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Abstract
The mechanisms of information storage and retrieval in brain
circuits are still the subject of debate. It is widely believed that
information is stored at least in part through changes in syn-
aptic connectivity in networks that encode this information and
that these changes lead in turn to modifications of network
dynamics, such that the stored information can be retrieved at
a later time. Here, we review recent progress in deriving syn-
aptic plasticity rules from experimental data and in under-
standing how plasticity rules affect the dynamics of recurrent
networks. We show that the dynamics generated by such
networks exhibit a large degree of diversity, depending on
parameters, similar to experimental observations in vivo during
delayed response tasks.
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Introduction
Brain networks have a remarkable ability to store infor-

mation in memory, on time scales ranging from seconds
to years. Over the last decades, a theoretical scenario has
progressively emerged that describes qualitatively the
process of information storage and retrieval. In this
scenario, sensory stimuli to be memorized drive specific
patterns of neuronal activity in relevant neural circuits.
These patterns of neuronal activity lead in turn to
changes in synaptic connectivity, thanks to synaptic or
structural plasticity mechanisms. These changes in
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synaptic connectivity allow the network to stabilize a
specific pattern of activity associated with the sensory
stimulus, and they can also allow the network to retrieve
this specific pattern, based on partial or noisy cues. This
scenario has led to two complementary trends of

research, on both the experimental and theoretical
sides: the first has focused on rules and mechanisms of
synaptic plasticity and the second has focused on how
activity-dependent synaptic modifications lead to
changes in network dynamics.

Theoretical models have played a major role in bridging
the gap between synaptic and network levels. These
models have been constrained by two types of data. Data
at the synaptic level constrain plasticity rules that can be
implemented in network models. These data typically

come from in vitro studies, but recent work, discussed in
this review, has also sought to constrain synaptic plasticity
models using in vivo data. Data at the network level yield
information about the types of dynamics that can be
generated by networks that maintain information about
past sensory stimuli, and/or future actions to be executed.
Experiments in vivo in animals performing delayed
response tasks have shown two types of dynamics in the
delay periods of such tasks (see e.g. Ref. [1]): (i) Persis-
tent activity, where neuronal firing rates are approximately
constant during the delay period, consistent with attractor

dynamics; (ii) Dynamic patterns of activity, where
neuronal firing rates have significant temporal modula-
tions during the delay period. Theoretical models that
have sought to reproduce such dynamics have followed
two different paths. The first has been to use networks
whose connectivity matrix is built using biophysically
plausible learning rules. The second has been to ignore
experimental data on synaptic plasticity, and rather use
supervised learning approaches that teach the network to
perform a given task, a set of tasks, or reproduce specific
neuronal recordings.

In this review, we will first describe recent progress in
deriving synaptic plasticity rules from experimental
data. In particular, we review recent approaches to infer
plasticity rules in vivo. We will then describe recent
theoretical work that has explored the dynamics of
networks with connectivity matrices built using
www.sciencedirect.com
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Figure 1
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Synaptic plasticity. (a). STDP (spike timing dependent plasticity) curves (i.e., dependence of synaptic plasticity on the timing difference between
presynaptic and postsynaptic spikes Dt) observed experimentally. A number of qualitatively distinct STDP curve shapes have been reported experi-
mentally: the classical curve (dark blue, seen e.g., in hippocampal cultures [2] and cortical slices [3]) exhibits a depression window (D) followed by a
potentiation window (P); A curve with a second depression window (DPD, magenta, seen in CA3 to CA1 connections at high calcium concentration [4�]);
A curve with only potentiation (P, purple, seen in area CA3 [5], in hippocampal cultures in the presence of dopamine [6]); and finally a curve with only
depression (D, light blue, in CA3 to CA1 connections at low extracellular calcium concentrations [4�,7]). A calcium-based model can account for all curve
shapes with different choices of parameters [8], and for the transition between different curves as a function of the extracellular calcium concentration [4�].
(b) Models from each of the classes discussed in the text are typically fit to in vitro data based on plasticity protocols where the same pre-post pattern of
activity is repeated. These models all give qualitatively similar firing rate dependence, which is similar to the BCM rule [9]. The specific shape of the non-
linearity, and in particular the threshold separating LTD and LTP, depends on the model and its parameters, and on whether pre/postsynaptic (or both)
firing-rate(s) are varied. A learning rule inferred from in vivo data [10�] gives a similar dependence on firing rate. (c) Models can also be used to predict
synaptic plasticity for independent presynaptic and postsynaptic firing rates. Shown here qualitatively is the magnitude of LTD (red) and LTP (blue), in a
scenario where synaptic modifications are well approximated by the form Dw = g(rpre)f(rpost) [10

�]. The dependence of plasticity on both presynaptic and
postsynaptic firing rate, varying as two independent variables, has not yet been characterized experimentally. (d) Inferring plasticity rules from in vivo data.
The firing-rate distribution of a single neuron in response to sensory stimuli exhibits significant differences between novel and familiar stimuli. These
differences can be used to reverse-engineer a learning rule that causes such differences. This learning rule has a dependence on the postsynaptic firing
rate that is qualitatively similar to the curve in panel b. Such a learning rule sparsens the representation of sensory stimuli, decreasing the response of
most neurons (those that respond with a firing rate that is smaller than the threshold between LTD and LTP), but leading to an increased response for a
small subset of neurons that have initially the strongest response [10�].
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biophysically realistic plasticity rules. We will also
discuss the storage capacity of such networks.
Synaptic plasticity rules
Studies of synaptic plasticity in vitro (reviewed in
Refs. [11e13]) have shown that synaptic modifications
(Dw) depend on spike-patterns of presynaptic and post-
synaptic neurons through relative timing, firing rates, the

location of the synapse along the dendritic tree, and on
the extracellular conditions of the preparation. Diverse
types of STDP (Spike Timing Dependent Plasticity)
curves have been characterized, in different preparations,
or sometimes in the same preparation but different
www.sciencedirect.com
experimental conditions (Figure 1A). Furthermore, syn-
aptic modifications are often weight-dependent. For
example, plasticity can be multiplicative (i.e., Dw f w),
and some plasticity experiments are consistent with
discrete synapses [14] (i.e., synapses that are stable only
in one of a discrete number of efficacy levels). Such
complex dependencies are typically simplified in mathe-
matical models to reduce the number of parameters fit to
data and facilitate analytical treatment of plasticity at the
network level. Models can be divided into classes which
differ in the identity of the intermediate biophysical
quantities which trigger plasticity: Firing rate-based rules,
which assume that changes to synaptic efficacy depend on
Current Opinion in Neurobiology 2021, 70:24–33
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26 Computational Neuroscience
the spike-trains only through their temporal average [9]
(Figure 1B and C); Spike timing-based models [15,16];
spike- and voltage-based rules [17]; calcium-basedmodels
[4�,8,18]; and finally, more detailed models based on
biochemical networks involved in synaptic plasticity [19].

While some of these models have had success in repro-
ducingmultiple in vitro synaptic plasticity protocols [8,16e
18], it remains unclear whether plasticity rules fit to in vitro
experiments apply to in vivo conditions. Indeed, recent
work shows that setting the extracellular calcium concen-
tration to physiological levels, instead of the higher con-
centrations typically used in in vitro studies, leads to
profoundly altered plasticity rules [4�]: No significant
plasticity was reported for pairs of single presynaptic and
postsynaptic spikes, independent of timing, at physiolog-
ical low calciumconcentrations. Significantplasticity could
be recovered using either high-frequency stimulation, or
bursts of spikes. A calcium-based rule was found to

describe this datawell quantitatively, provided interactions
between calcium transients triggered by presynaptic and
postsynaptic spikes are sufficiently non-linear [4�].

An alternative approach to bridge plasticity rules and
changes to network structure as an animal learns, is to infer
rules of synaptic plasticity directly from in vivo data
(Figure 1D). A difficulty in obtaining information about
synaptic plasticity in vivo is that it is not yet possible to
simultaneously measure synaptic efficacy together with
presynaptic and postsynaptic activity. However, Lim et al.

[10�] noticed that changes in neuronal responses to
repeated presentations of sensory stimuli can provide in-
formation on the putative plasticity rule that is responsible
for these changes. In particular, they used distributions of
visual responses of neurons in the inferior temporal cortex
(ITC) to two different sets of stimuli (one novel, the other
familiar). Assuming the plasticity rule depends on firing
rates of presynaptic and postsynaptic neurons as Dw =
f(rpost)g(rpre), one can use these distributions to infer f, i.e.,
the dependence of theplasticity rule on postsynaptic firing
rate (Figure 1B,D). The function g cannot be fully
determined but can be shown to be positively correlated

with presynaptic firing rate. Interestingly, the inferred
function f exhibits depression at low rates and potentiation
at high rates, consistent with multiple plasticity rules
inferred from in vitro data. In a subsequent study, Lim
found that the analysis of changes in temporal patterns of
activity with familiarity makes it possible to disentangle
recurrent and feedforward synaptic plasticity [20]. More
recently, machine-learning approaches have been devel-
oped to infer plasticity rules from data, by training a neural
network to classify the presumed plasticity rule into one of
a number of categories [21,22]. So far, these approaches

have been applied to synthetic data with known ground-
truth, but not to real data.

Another major recent advance in our understanding of
synaptic plasticity in vivo is the demonstration that
Current Opinion in Neurobiology 2021, 70:24–33
plasticity can be induced by pairing presynaptic spikes
with postsynaptic ‘plateau potentials’ [23�]. Crucially,
this form of plasticity is far less sensitive to the relative
timing of events than classical STDP (~ 1s relative to ~
20 � 50 ms), thus providing a new mechanism connect-
ing synaptic modifications and behavior. Voltage- and
calcium-based plasticity rules mentioned above could
potentially be modified to account for this mechanism

through the introduction of a long time-scale. In the
future, experiments that combine whole-cell patch
clamp of postsynaptic neurons or imaging of dendritic
spines, together with (sensory and/or optogenetic) ma-
nipulations of activity, are likely to provide essential in-
formation on synaptic plasticity in vivo (e.g., Refs. [24e
26]). Another approach that will become more powerful
with tool development is to track the strength of synaptic
connections based on inference from large-scale longi-
tudinal electrophysiological recordings using silicon
probes or fast voltage indicators [27].
Network dynamics
What type of dynamics emerge in networks endowed
with the biologically plausible learning rules described
above? Are such dynamics consistent with neural re-

cordings? Theoretical studies tackling these questions
can be divided into two learning scenarios. In the first
scenario, learning and retrieval occur in two distinct
phases. In the learning phase, input patterns to the
network are imprinted in the connectivity by synaptic
plasticity rules. After learning, the network connectivity
is held fixed during retrieval of memory items. This
scenario implicitly assumes a separation of time scales
between learning and retrieval, or alternatively, that
learning is gated by a third factor, such as neuro-
modulators. In the second scenario, the synaptic con-
nectivity is dynamic, and synaptic plasticity is always

ongoing, during both the learning of new memories and
their successive retrieval. In this section, we describe
recent progress in addressing the above questions in
these two scenarios.
Networks with fixed learned connectivity
In classic attractor network models, memories are
represented as fixed-point attractors of the network
dynamics [30,31] (see Figure 3A). In attractor states,
subsets of neurons maintain an elevated persistent ac-
tivity after the presentation of an item that is stored in
memory, while other neurons remain at low activity
levels (Figure 3B). Such dynamics can be generated

when synaptic connectivity is structured using a
temporally symmetric plasticity rule (associating pre-
and postsynaptic activity occurring at the same time t)
in order to learn new memories (Figure 2A). Attractor
network models reproduce qualitatively the phenome-
non of persistent activity that has been widely observed
in delayed response tasks. However, learning rules used
in these models have until recently been unconstrained
www.sciencedirect.com
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Figure 2
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Network connectivity after learning with temporally symmetric (a) and asymmetric (b) plasticity rules. (a) An external input leads to increased activity of the
set of orange neurons. With a temporally symmetric plasticity rule, this activity leads in turn to strengthening of synapses connecting these neurons in a
bidirectional fashion, leading to strongly symmetric synaptic connectivity. (b) Temporally varying external inputs lead to successive activation of the
orange, green and purple sets of neurons. With a temporally asymmetric plasticity rule, connectivity is strengthened in a unidirectional fashion, leading to
an asymmetric, effectively feedforward connectivity between these sets of neurons.
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by data. Furthermore, neuronal activity observed during
delay periods in the prefrontal cortex is often charac-
terized by a strong temporal variability, that seems hard
to reconcile with fixed-point attractor retrieval states
[32�,33]. Recently, a network endowed with a tempo-
rally symmetric learning rule and transfer functions
inferred from in vivo recordings in ITC (see Figure 1D,

[10�]) was shown to exhibit attractor dynamics
(Figure 3AeC) [28�]. Firing rate distributions in
retrieval states are close to log-normal and qualitatively
match experimental data [34,35]. When the strength of
the recurrent connections increases, the network un-
dergoes a transition in which retrieval states become
chaotic [28�,36] (Figure 3D). In this state, firing rates
strongly fluctuate in time while the overlap between the
network state and the retrieved memory remains con-
stant (Figure 3E and F). This activity strongly resembles
neural activity in the prefrontal cortex during delayed

response tasks, where dynamics are confined to a stable
subspace despite large temporal fluctuations among in-
dividual neurons [32�].

When the learning rule is temporally asymmetric,
network connectivity storing sequences of input pat-
terns is strongly asymmetric (Figure 2B) [29�,37,38].
The network dynamics no longer converges to fixed
points, but rather exhibits sequential activity, in which
neurons are active at particular points in time that are
reproducible across multiple trials (Figure 3H and I).
The dynamics of these networks display several features

that are consistent with experimentally observed
www.sciencedirect.com
activity [29�]. These include non-uniform temporal
statistics, such as an over-representation of activity at
the beginning of a sequence, and a broadening of ‘time
fields’ with elapsed time, similar to observations in time
cells during delay period activity [39,40]. Other studies
have explored how the interplay between symmetric
and asymmetric connectivity shapes network dynamics,

leading to ‘Hebbian assemblies’ for predominantly
symmetric connectivity while sequential activity is
generated for predominantly asymmetric connectivity
[41].

Networks with dynamic connectivity
Multiple theoretical studies have explored scenarios of
online learning, in which learning is continuously active
[42e50]. These networks typically begin with random,
unstructured connectivity and organize through time as
a function of network activity. One of the main chal-
lenges in this learning scenario is the stability of infor-
mation encoded in the weights and of network activity.
In particular, Hebbian synaptic plasticity is well known

to produce instabilities, due to the positive feedback
loop between neuronal activity and synaptic strength
inherent in this form of plasticity. Thus, additional sta-
bilization mechanisms must be added, such as homeo-
static plasticity [51], constraints on total incoming [52]
and/or outgoing [42] synaptic weights, metaplasticity
[9] and inhibitory plasticity [12].

To generate persistent activity from structured inputs,
specific assemblies can be repeatedly activated through
Current Opinion in Neurobiology 2021, 70:24–33
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targeted external inputs. Spike-based plasticity among
excitatory neurons, in combination with homeostatic
and inhibitory plasticity, selectively strengthens the
recurrent connections necessary to sustain activity
within a given active assembly [43,44,49,53]. To
generate sequential activity from structured inputs, as-
semblies can be activated with a repeated temporal
order to drive the formation of asymmetric feedforward

connectivity [46,49,54]. It has also been shown that
oscillatory external input can interact with Hebbian
plasticity to favor the emergence of a connectivity
structure supporting sequential activity [55]. Both as-
semblies and feedforward structure can also self-
Figure 3

Network dynamics following learning. (a) Schematic of fixed point attractor retr
divided into basins of attraction, within which network activity will converge to a
rates during background (0–1 s), presentation of a pattern stored in memory
presentation (1.5–2.5 s), in a network in which distributions of stored patterns
state, single neurons fire with a wide (~ lognormal) distribution of rates. Durin
rates, while most neurons are suppressed. After the stimulus is removed, the n
neurons exhibits persistent activity. (c) Overlap between network state and th
remains high following removal of external input, while overlaps between netwo
chaotic attractor retrieval states. Network activity is confined to a subspace, b
(b)–(c), except the network has stronger recurrent connections and stimulus p
before stimulus presentation, with all single neuron firing rates fluctuating wide
state that is strongly correlated with the stored pattern (see blue overlap in f)
sequences (red and blue). Activity transitions from one subspace to the next.
and is initialized close to the first stored pattern in a sequence of 24 patterns at
the network successively visits the neighborhoods of the different patterns co
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organize from spatially unstructured Poisson input. In
this scenario, constraints on the total incoming/outgoing
synaptic weights are critical to both the initial devel-
opment of this structure and its long-term stability
[42,56].

In general, whether feedforward or assembly connec-
tivity structure in these models develops over the course

of learning depends on specific features of the plasticity
rule that favor different local network motifs [45,47,57],
as well as the timing of stimuli presentations in the case
of structured input [49].
Current Opinion in Neurobiology

ieval states occupying discrete subspaces. The space of network states is
fixed point (black circle), representing a learned item. (b) Single unit firing
(between dashed lines, 1–1.5 s), and ‘delay’ period following stimulus
and learning rule have been inferred from data [28�]. In the background

g the stimulus presentation, a small fraction of neurons are driven to high
etwork converges to a selective attractor states, in which a small fraction of
e presented pattern (blue) increases during stimulus presentation and
rk state and other stored patterns (green) remains small. (d) Schematic of
ut does not converge to a stable fixed point. (e)–(f) Similar as in panel
resentation is between 2 and 2.5 s [28�]. The network is in a chaotic state
ly. After stimulus presentation, the network switches to a different chaotic
. (g) Schematic of sequential pattern retrieval for two separate stored
(h)–(i) Similar as in panels (b)–(c), except the network stores sequences,
0.35 s [29�]. Single neurons are transiently activated at different times, and
mposing the sequence, as shown by transient overlap activations in i.
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Storage capacity
A long-standing theoretical question about information

storage in recurrent networks is the question of storage
capacity: How many memories can be stored in a
network with a given architecture? Theorists have used
two types of approaches to address this question. The
first consists in computing the storage capacity of net-
works with specific learning rulesdthe paradigmatic
example being the computation of the storage capacity
of the fully connected Hopfield model [58]. Storage
capacity, defined as the number of retrievable memory
items divided by number of plastic input connections
per neuron, was subsequently shown to increase when

connectivity is sparse [59], and with sparse coding of
memories [60]. The second approach consists in
computing the optimal storage capacity, in the space of
all possible connectivity matrices [61]. This last
approach therefore gives an upper bound, referred to as
the Gardner bound, on what can be achieved by any
plasticity rule (but see below). However, though this
optimal capacity can be achieved using a supervised
learning rule such as the perceptron learning rule or its
variants, it is unclear whether biologically plausible un-
supervised learning rules can reach this bound, and if

not, how close to capacity they can get.

Recent studies have revisited the issue of storage ca-
pacity using models constrained by data. A sparsely
connected network with a learning rule constrained by
ITC data was shown to have a remarkably large capacity,
similar to the capacity of sparsely connected networks of
binary neurons [28�]. Furthermore, it was shown that
learning rules fitted to data are close to the optimal
capacity, in the space of unsupervised Hebbian plasticity
rules, parameterized by a sigmoidal dependence on

presynaptic and postsynaptic rates. The optimal capac-
ity in this space is given by a learning rule that stores a
covariance of binarized input patterns [60]. The storage
capacity of networks storing sequences have also been
computed recently in a special case of a learning rule
storing the time-delayed covariance of Gaussian input
patterns [29�], but the optimal capacity in the space of
unsupervised rules remains an open question in this
case.

While capacity has traditionally been studied exclusively

in networks with unconstrained weights, or in networks
with plasticity restricted to excitatory-to-excitatory
weights, Mongillo et al. [62�] have recently studied
the impact of inhibitory plasticity on capacity. They
used a network of excitatory and inhibitory neurons and
constrained connectivity parameters to ensure average
firing rates and spiking variability were at physiologically
observed values. These constraints lead in their model
to a variance of inhibitory inputs that is much larger than
www.sciencedirect.com
the variance of excitatory inputs. They then studied the
storage capacity of the network, using Hebbian/anti-
Hebbian plasticity in excitatory/inhibitory connections,
and showed plasticity in inhibitory connections can
provide a very large boost to capacity, increasing it
several fold.

A longstanding open question is how close are networks

with unsupervised Hebbian rules to theoretical bounds.
Work from the 1980s had shown that in the sparse
coding limit, the storage capacity of networks with a
covariance rule gets asymptotically close to the Gardner
bound [60,61]. Recently, Schonberg et al. [63�] showed
that networks of neurons with threshold-linear units
that store memories through a Hebbian rule can have a
storage capacity that reaches and even exceeds the
Gardner bound, for sparse enough memories. This
apparent discrepancy can be understood by the fact that
the Gardner bound is computed assuming attractors are

exactly identical to stored memories. In networks with
Hebbian rules, attractors are in general correlated, but
distinct from the patterns that are stored in the con-
nectivity matrix. In the network studied in Ref. [63�],
attractors turn out to be sparser than the stored pat-
terns, which leads to a higher capacity than the Gardner
capacity, computed for the sparseness level of the stored
patterns. Intriguingly, theoretical work on the properties
of synaptic connectivity in networks optimizing infor-
mation storage has shown that many non-trivial experi-
mentally observed properties of synaptic connectivity in

cortex can be reproduced by such optimal networks,
including low connection probability and over-
representation of bidirectionally connected pairs of
excitatory neurons [64�], high connection probability of
inhibitory connections [65], and balance between exci-
tation and inhibition [66].
Discussion
We have reviewed here recent progress on the charac-
terization of Hebbian synaptic plasticity rules in in vivo
conditions, on the dynamics of recurrent networks
endowed with Hebbian synaptic plasticity rules, and on
the storage capacity of such networks. On the synaptic
plasticity front, the emerging picture is that isolated
pairs of presynaptic and postsynaptic spikes are insuf-
ficient to elicit significant plasticity in physiological
conditions. Rather, more prominent activity patterns,

involving bursts of spikes, plateau potentials and/or
sufficiently high firing rates, seem to be necessary to
induce lasting changes in synaptic connectivity.
Calcium-based models have been shown to fit well a
broad range of data and seem a good starting point for
extensions and generalizations, including bridging
plasticity to behavioral timescales, studying plasticity
in spatially extended neurons, and disentangling ef-
Current Opinion in Neurobiology 2021, 70:24–3
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fects of plasticity induced by presynaptic and post-
synaptic activity from additional factors such as
neuromodulators.

On the network dynamics front, recent studies have
shown that simple Hebbian plasticity rules can lead to a
wide diversity of retrieval dynamics, from convergence
to a fixed point (leading to persistent activity), to chaos

(leading to highly irregular persistent activity), or
sequential dynamics, depending on coupling strength
and the degree of asymmetry in the synaptic plasticity
rule. An important question is whether a given network,
with a given learning rule is able to produce diverse
types of dynamics, depending on the statistics of inputs
received during learning and/or the delay period. The
study of ref. [49] provides a proof of principle that a
network with a temporally asymmetric Hebbian rule can
generate both persistent activity and sequential activity,
depending on the temporal statistics of the input during

learning.

The diversity of the types of dynamics that are
observed in networks with simple unsupervised
Hebbian plasticity rules is reminiscent of the diversity
of experimentally observed dynamics in delay periods
in delayed response tasks in mammalian cortices. The
phenomenon of persistent activity, which has been
widely observed in multiple types of delayed response
tasks [67], has long been thought to be a manifestation
of recurrent dynamics in cortical circuits [68]. Pertur-

bation studies have shown that the dynamics in the
ellipsoid body of flies [69] and area ALM of mice
[70�] are consistent with attractor dynamics. However,
a number of challenges to the persistent activity/
attractor dynamics hypothesis have been identified
(see e.g. Ref. [33]): (1) even when persistent activity is
seen after trial averaging, the dynamics in single trials
shows a high degree of irregularity, with activity often
occurring in sparse, transient bursts; (2) the trial-
averaged activity is often dynamic, with ramping or
sequential activity patterns. While ramping activity
could be reconciled with a fixed-point attractor sce-

nario in the presence of time-dependent input
encoding elapsed time [70�], sequential activity re-
quires a different conceptual framework than attractor
dynamics. As described in Section 3, the diversity of
dynamics observed in networks with Hebbian plasticity
can recapitulate the experimentally observed diversity:
Classic persistent activity could correspond to the
fixed-point attractor scenario (Figure 3AeC), while
persistent activity with highly irregular/bursty single
trial activity could correspond to the chaotic attractor
scenario (Figure 3DeF), both of which can be gener-

ated using temporally symmetric synaptic plasticity.
Finally, sequential activity can be generated using
Current Opinion in Neurobiology 2021, 70:24–33
temporally asymmetric synaptic plasticity, as shown in
Figure 3GeI.

The networks discussed in Section 3 also reproduce a
number of non-trivial features of experimentally
observed activity. For instance, when parameters of
neuronal transfer functions and learning rule are infer-
red from data, the distributions of firing rates in the

delay period do not exhibit a strong bimodality, similar to
what is seen in delay match to sample tasks [28�,34,35].
In the case of sequences, the temporal characteristics of
retrieved sequences display a number of striking simi-
larities with data, such as the broadening of time fields
with elapsed time, and the non-uniformity of the dis-
tribution of time field centers [29�].

In the theoretical framework we have described here,
memories stored in the network correspond to fixed
network states (or sets of network states in the case of

sequences). Recent longitudinal recordings of popula-
tion activity on the time scale of weeks have shown that,
far from being fixed, these network states constantly
reorganize on these long time scales (a phenomenon
that has been termed representational drift) [71]. In a
recent paper, we have shown that this phenomenon is
compatible with the storage of fixed memories, in the
presence of slow synaptic dynamics, either due to
random fluctuations, or to storage of new memories
[29�].

The approach we have outlined in this review (i.e., using
unsupervised, biophysically motivated synaptic plas-
ticity rules) can be contrasted with recent studies that
have used supervised learning approaches, either to
reproduce a given task or set of tasks [72e75], or to
reproduce the observed sequential activity [76]. This
approach has had success in reproducing some of the
diversity of observed dynamics, but has the drawback
that the plasticity rules do not satisfy locality constraints
and are therefore not biologically plausible. Several
steps have been taken towards making these rules more
biologically realistic, either by imposing by hand a lo-

cality constraint [77], or by using a three-factor plas-
ticity rule that include a delayed reward information
[78]. Integrating unsupervised and reward-based
learning remain an important subject for future work.

Much work remains to extend the results described in
this review to more biophysically realistic learning
settings, in which recurrent synaptic inputs interact
with external inputs in non-trivial ways. In addition,
the storage capacity of online plasticity rules remains
an open question. On the experimental side, an

outstanding open question is demonstrating that the
types of dynamics seen during delayed response tasks
www.sciencedirect.com
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depend on Hebbian synaptic plasticity. The ongoing
parallel progress in experimental and computational
techniques makes us hopeful that answers to these
questions might become available in the next few
years.
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