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Databases of consistent, directed- and weighted inter-areal

connectivity for mouse, macaque and marmoset monkeys have

recently become available and begun to be used to build

structural and dynamical models. A structural hierarchy can be

defined based by laminar patterns of cortical connections. A

large-scale dynamical model of the macaque cortex endowed

with a laminar structure accounts for empirically observed

frequency-modulated interplay between bottom-up and top-

down processes. Signal propagation in the model with spiking

neurons displays a threshold of stimulus amplitude for the activity

to gain access to the prefrontal cortex, reminiscent of the ignition

phenomenon associated with conscious perception. These two

examples illustrate how connectomics inform structurally based

dynamic models of multi-regional brain systems. Theory raises

novel questions for future anatomical and physiological empirical

research, in a back-and-forth collaboration between

experimentalists and theorists.

Directed- and weighted inter-areal cortical connectivity

matrices of macaque, marmoset and mouse exhibit similarities

as well as marked differences.

The new connectomic data provide quantitative information for

structural and dynamical modeling of multi-regional cortical

circuit providing insight to the global cortical function.

Quantificationofcorticalhierarchyguides investigationsof interplay

between bottom-up and top-down information processes.
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Introduction
In 1991 Felleman and Van Essen published a landmark

paper where they collated data from existing literature to

propose a hierarchy model of the macaque monkey cortex

[1]. This paper provided an impetus for efforts that,

10 years later, led to an inter-areal cortical connectivity

matrix, the Collation of Connectivity data on the

Macaque brain (CoCoMac) [2]. The CoCoMac matrix

was fairly rough, with connections between area pairs

assigned as absent, weak or strong. The diversity of

experimental approaches used in different studies from

which data were collated means that the resulting data-

base was not consistent. Nevertheless, it represented a

pioneering event in the field now referred to as brain

connectomics.

The past two decades have seen significant advances

[3–9]. Novel approaches and technologies have made it

possible to determine wiring of neural circuits in the

brain at microscopic, mesoscopic and macroscopic spatial

scales [10–13]. Importantly, while it may be true that a

picture is worth a thousand words, systematic measure-

ments translated into precise numbers are essential for

discovering general principles of large-scale cortical

organization. This short review covers recent advances

in our description of cortico-cortical connections, and

computational modeling based on new quantitative data-

bases. We shall summarize recent approaches and find-

ings, as well as challenges that need to be addressed in

order for the field to move forward. The word

‘connectome’ as currently used sometimes refers to

collations of data obtained with different methods, with

disparate resolutions. The present review focuses on the

connectome defined with consistent approaches exploit-

ing cellular-resolution tracers [14], which at present can

only be used in nonhuman animals.

From spatially constrained large scale
anatomical models to multi-regional cortical
dynamics
A major advance in recent years has been provided by

quantitative and consistent databases of inter-areal con-

nectivity in macaque [14,15,16��,17], mice [18–20,21��],
and marmoset [22,23��]. Quantification of connection

weight has played a major role and this has been greatly

facilitated by a systematic analysis of retrograde tracing.

Specifically, the weight of cortico-cortical connection is

indexed by fraction of labeled neurons (FLNs) between

0 and 1, which measures the relative weight of projection

from a given source area with respect to all source areas to a

particular target area [15,16��,20,22]. In this manner
www.sciencedirect.com
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connections are weighted parametrically, which is consid-

erably more informative than a binary matrix. It is also

directed, unlike diffusion tractography which, although

non-invasive, cannot differentiate fibers from area A to

area B and those in the reversed direction. Whereas stream

line weights can be inferred from tractography, measure-

ments from tract tracing are direct and thus constitute a

‘ground truth’. Data from tractography have relatively low

signal-to-noise ratio (with numerous false positives and

false negatives), and the correlation is modest between

log-transformed tractography and tracer connection

weights in the macaque (r ’ 0:59). Further, this correla-

tion drops dramatically when the confounding influence

of distance is removed via partial correlations [24].

Three sets of findings are noteworthy. First, the Felle-

man-Van Essen structural model is significantly modified

by quantification [16��,25] (Figure 1). Retrograde tracers

show that source neurons for a feedforward projection

(e.g. from V1 to V2) reside principally in the superficial

layers (above layer 4), and are reciprocated by a feedback

projection (V2 to V1) originating principally from neurons

in the deep layers (below layer 4) [16��]. Quantitative

formulation of these laminar-dependent projections is

based on the measured fraction of supragranular layered

neurons (SLNs) for a given projection (Figure 1). This

allows a description of a determined model of hierarchy

(Figure 1). Furthermore, SLN has been used to extract a

functional hierarchy in macaque [26] and, via comparison

of homologous pathways, in the human brain [27]. Sec-

ond, the weight of connections between two areas decays

exponentially with their distance as measured by their

estimated white matter tract (the exponential distance

rule EDR). The EDR has been shown to be a powerful

organizing principal that predicts numerous empirical

features of the inter-areal network including motif dis-

tributions, global and local efficiency, core-periphery

organization and wire minimization in both non-human

primates and rodents [17,20,23��,28]. Third, the weights

of inter-areal connections are highly heterogeneous, span-

ning five orders of magnitude and following a lognormal

distribution [15]. Therefore, a graph-theoretical view of

cortical networks is inadequate unless spatial relation-

ships between areas are taken into consideration [29].

This finding has inspired a new class of generative models

for the cortical networks that are explicitly spatially

embedded [30].

The directed and weighted macaque connectivity matrix

provides a structural scaffolding for the development of

large-scale functional dynamical models of macaque cor-

tex. Chaudhuri et al. [31] constructed a multi-regional

model of macaque monkey cortex with the inter-areal

connectivity matrix from Ref. [15]. In the model, each

area was mathematically modeled by a generic excitatory-

inhibitory network, in accordance with the commonly

accepted notion of the canonical cortical circuit [32].
www.sciencedirect.com 
The quantitative connection strengths, however, vary

from one area to another. These variations are not ran-

dom, but systematically change along low-dimensional

axes across the cortical mantle. Chaudhuri et al. [31]

considered the number of spines (loci of excitatory syn-

apses) in the basal dendritic tree of pyramidal neurons, as

a proxy of the strength of synaptic excitation per neuron,

which displays an increasing gradient along the cortical

hierarchy [33]. Interestingly, in this model, temporal

dynamics of each area is dominated by a time constant

that ranges from tens of milliseconds for early sensory

areas to more than a second for prefrontal areas at the top

of the cortical hierarchy, precisely what is required for

functional differentiation. Importantly, the prevalent

time constant of an area is not a monotonic function of

its hierarchical position. For instance, the frontal eye field

in the quantitatively defined hierarchy is located at a

relatively low position in the hierarchy as shown in

Figure 1 [16��], but it displays a slow time constant by

virtue of being part of the frontal lobe in close interactions

with other frontal areas that display slow dynamics. The

timescale spectrum in the cortex is constrained by both

the macroscopic gradient of synaptic connection strength

and the weighted inter-areal cortical network. Experi-

ments lend empirical evidence in support of such hierar-

chy of temporal response windows in macaque monkey

[34], mouse [35] and human [36].

The concept of macroscopic gradients [37��] applies to

both synaptic excitation and inhibition processes. For

instance, counts of diverse inhibitory cell-types across

the mouse cortex shows that the density of GABAergic

cells expressing calcium-binding protein parvalbumin

(PV), which control spiking outputs of excitatory pyrami-

dal neurons, is highest in the primary visual cortex and

much lower in association areas [38,39]. Assessment of

such macroscopic gradients can be carried out using a

variety of data, including levels of gene expression that

encode receptors for synaptic excitation and inhibition

[40��,41�]. This approach allows identification of the

biological fingerprint of different cortical areas; these data

can then be incorporated into dynamical computational

modeling. They also are valuable for comparison across

species. In particular, we will discuss below the definition

of cortical hierarchy in primates versus rodents.

Cortical hierarchy in mouse and marmoset
Cortico-cortical connectivity in mouse also displays a wide

range of connection weights and the EDR [20,28]. How-

ever, whether the mouse cortex displays a well-defined

hierarchy remains unsettled. Previous studies note various

biological markers are high in V1 and low in association

areas, such as PV neuron density [38] and the T1w:T2w

ratio from structural magnetic resonance imaging, which is

thought to correlate with the level of myelin content in the

grey matter [42]. Such measures gradually change across

the cortex in a way reminiscent of a hierarchy. However,
Current Opinion in Neurobiology 2020, 65:152–161



154 Whole-brain interactions between neural circuits

Figure 1

(a)

(c) (d)

(b)

Current Opinion in Neurobiology

Quantitatively defined hierarchical model of the macaque visual cortex. (a) Area frequency distributions of the 150 000 solutions to the Felleman

and Van Essen (1991) model [79] (b) The indeterminacy shown in (a) is resolved by statistically modeling the SLN index. In this scheme the

hierarchical distance between levels is determined by the laminar distributions of the set of areas [66]. This captures many of the features of the

Felleman and Van Essen model but there are significant differences namely the relatively low level of the small-saccade component of the frontal

eye field (area 8L) which is at a considerably lower level. Box sizes, proportional to areal dimensions. (c) Influence of distance from target area on

frequency of feedback (FB) and feedforward (FF) connections. (d) Overall proportions of FF and FB pathways. (a) is reproduced from Ref. [79]; (b),

(c) and (d) are modified from Ref. [16��].
many biomarkers exhibit statistical macroscopic gradients

[37��]. Ideally, one would like to identify an objective and

robust definition of hierarchy, then assess the variations of

properties as dependent variables along the hierarchy

defined as an independent variable.

A recent study examined the issue of hierarchy in the mouse

cortex based on anterograde fluorescent labeling of

axons [21��]. Using multiple Cre driver lines, Harris

etal. selectivelytraced layer-andcell type-specificprojection
patterns. An unsupervised method was used to consistently

assign these laminarprojections at the targetarea to be either

feedforward or feedback in a hierarchy framework. For

instance, different types of thalamocortical connections

targeting L4 versus L1 in the cortex were separately quanti-

fied. Interestingly, it was found that the inclusion of the

thalamocortical projections enhanced the consistency of the

hierarchy defined in this manner [21��]. In a neurophysio-

logical experiment using a mouse performing a detection

task, the latency of spiking response to a visual stimulus was

extracted from neurons in 6 visual areas [35], Person
Current Opinion in Neurobiology 2020, 65:152–161 
correlation of response latencywiththeanatomicallydefined

Harris hierarchy was found to be high (r ’ 0:88).

Another approach was inspired by a recent study of the

organization of transmodal default-mode networks in

human and macaque [43�]. The work was based on a

nonlinear dimensionality reduction method called dif-

fusion maps [44]. Briefly, the connectivity matrix is

used to define an abstract diffusion between pairs of

areas in a hypothetical diffusion process. This distance

produces a diffusion space where closer areas in this

space share a larger number of paths connecting them,

while areas far apart are less connected. In general, the

diffusion distance depends on a low number of

‘principal directions’ or ‘principal gradients’ in diffu-

sion space, leading to a low dimensional embedding of

the connectivity. Applying this approach to the whole

mouse brain data in Ref. [45] and by choosing V1 as the

origin in the diffusion space, a hierarchy among areas

can be built by sorting areas by their diffusion distance

to the origin.
www.sciencedirect.com



Brain connectomes come of age Wang et al. 155
Figure 2 shows the pairwise correlations between the

anatomically defined hierarchy from Ref. [21��], the hier-

archy deduced from the diffusion map, PV density [38]

and T1w:T2w ratio in the mouse brain [41�]. Intriguingly,

Spearman correlation coefficient values are in the range of

0.35 to 0.5. The explanation of substantial but far from

perfect correlations is presently unclear, indicating that

future research is warranted to achieve a consensus on the

definition of cortical hierarchy in the mouse.

It is possible that a cortical hierarchy is flatter or less

developed in rodents than primates [20]. This difference

in organization could emerge from simple scaling laws

[46,47], which predict that brain size is inversely corre-

lated with ‘percent connectedness’ (the fraction of brain

cells with which any cell communicates directly). This, in

turn, could have the effect of increasing the variety of

inputs to any given cortical area, hence reducing the

dominance of any single source, and ‘blurring’ the defi-

nition of hierarchical levels. Thus, the current evidence

point to specific differences between primates and

rodents, which are likely to have emerged due to specific

evolutionary pressures.

Recent analyses based on a dataset of directed and

weighted connections in the marmoset cortex shed light
Figure 2

(a)

(d) (e) 

(b) 

Cortical hierarchy in the mouse can be defined by four different measures: 

diffusion map measure and the Harris measure based on layer-dependent c

correlation between these four measures, however, typically have a correlat

www.sciencedirect.com 
on this issue [22,23��]. Marmosets, like macaques, are

simian primates, but are much smaller (on average, the

mass of the marmoset brain is 12 times smaller than that of

M. fascicularis). In line with the scaling hypothesis, previ-

ous studies have indicated that the sources of afferents to

both sensory and association areas are more widely dis-

tributed spatially across the cortex in marmosets than in

macaques. However, a recent comprehensive study of the

cortical connectome using statistical techniques applied

to retrograde tracer data also revealed that this is accom-

plished without loss of specificity: the cortical connectiv-

ity matrix is very similar to that in the macaque in terms of

overall density (approximately 2/3 of the possible con-

nections that could exist are observed experimentally in

both species), but they both differ from the mouse (where

97% of the possible connections exist). The similarity

between macaque and marmoset extends to more

detailed properties of the connectome, such as occurrence

of reciprocal versus unidirectional connections. Other

properties of the marmoset connectome, such as the

presence of a well-defined core-periphery arrangement

and the log-normal distribution of connection weights,

also bring the two primates in close alignment. Impor-

tantly for the present argument, the marmoset cortex is

also characterized by a well-defined hierarchy [23��],
where areas belonging to the different sensory domains
(f)

(c)
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T1w:T2w ratio [41�] and PV neuron density [38] decrease, whereas the

onnectivity [21��] generally increase with the hierarchy. The pairwise

ion of about 0.3–0.5.

Current Opinion in Neurobiology 2020, 65:152–161
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occupy defined levels, from primary visual, auditory and

somatosensory areas, though several higher-order associ-

ation areas, to sensory association and polysensory areas.

These multiple hierarchies converge to a core of frontal,

posterior parietal, rostral temporal areas, which occupy

the highest hierarchical levels, and include those regions

of the cortex that expanded most during primate evolu-

tion [48]. Furthermore, the hierarchical levels defined by

connectivity are highly correlated with structural mea-

sures such as neuronal density [49] and number of spines

in the basal dendritic trees of pyramidal cells [50]. Further

studies in marmosets, including the integration of cellular

connectivity data with high-resolution tractography and

functional connectivity measures using neuroinformatic

platforms [51,52] offer the promise of greater insight onto

the correlation with non-invasive measurements in

the human brain, which promise to increase our ability

to investigate the bases of neuropsychiatric conditions

[53–56].

Dynamic models of hierarchical information
processing in the macaque cortex
In order to develop a dynamic model showing how

bottom-up and top-down processes interact, a computa-

tional model of inter-areal processing in the cortex is

improved by the incorporation of a laminar cortical struc-

ture [57]. In the model, a local area has a superficial and a

deep layer; each with an excitatory-inhibitory microcir-

cuit (Figure 3a). The superficial layer exhibits noisy

synchronous oscillations in the gamma (’40 Hz) fre-

quency range [58,59]; whereas the deep layer shows

coherent oscillations at low beta (’15�20 Hz) or alpha

(’10 Hz) frequency range [58,60,61]. The inter-laminar

connections were calibrated based on the existing liter-

ature. Consequently, gamma activities in the superficial

layers were shown to be modulated by alpha (Figure 3b),

agreeing with empirical findings [62].

To assess the plausibility of this model, Mejias et al. [57]

evaluated frequency-dependent Granger causality, which

is a measure of directionality of information flow. Monkey

physiological studies showed that Granger causality is

enhanced in the gamma frequency band for a feedforward

projection (for example, from V1 to V4) but in the alpha

frequency band for a feedback projection (V4 to V1)

[26,63]. This observation was captured by the model

(Figure 3c). Bastos et al. [26] had shown that the differ-

ence in the Granger causality peak values at the gamma

and alpha frequencies could be used to establish a func-

tional cortical hierarchy. Subsequently, frequency-depen-

dent Granger causality analysis applied to magnetoen-

cephalography revealed a functional hierarchy in human

species [27]. The hierarchy, thus deduced purely by

physiological measurements, is strongly correlated with

that from the anatomical analysis in the macaque monkey.

The large-scale laminar network [57] reproduces this
Current Opinion in Neurobiology 2020, 65:152–161 
hierarchy (Figure 3d), thus substantially validating the

computational model.

This model highlights several questions that deserve

attention in future experiments. Firstly, inter-areal con-

nectivity weights anatomically do not directly map onto

physiological strengths of synaptic connections, although

both show lognormal distributions [15,64,65]. In the local

microcircuit, synaptic strengths typically vary over 2–3

orders of magnitude [65] rather than five found in the

inter-areal network [15]. Hence an interesting open ques-

tion is to quantify synaptic strengths for long-distance

cortical projections. Secondly, the laminar origins and

targets of top-down feedback projections are poorly

understood [66]. In the inter-areal cortical matrix,

feedback connections reach significantly further than

do feedforward connections and are twice as numerous

(Figure 1c,d). These issues need to be investigated with

viral tracers which in principal can overcome the technical

limitations of classical tracers such as fibers of passage.

Thirdly, major distinct inhibitory neuron types have

relative proportions that vary from area to area and layer

to layer. They are differentially targeted by long-range

connections, but this information is crucially lacking at

the present time.

Modeling has also been used to re-visit a classical problem

in computational neuroscience, namely, signal propaga-

tion across multiple neural populations. Most previous

models formulated the problem in a purely feedforward

network, where neural group 1 receives an input and fires

a burst of spikes, activating neural group 2, which in turn

projects to neural group 3, etc. [67]. A signal either

successfully propagates throughout the system, or dies

out in the middle of the network. As already mentioned

the macaque cortical connectivity is endowed with

numerous, highly heterogenous, feedback projections.

As a consequence, it is nontrivial to ensure reliable yet

stable propagation of activity, say triggered by brief visual

input to area V1. In a spiking neuron version of the multi-

regional large-scale macaque cortex model, it was found

that whereas activity increases with stimulus intensity in

areas of the occipital lobe, those in the prefrontal cortex

(PFC) exhibit near zero response when the stimulus

intensity is below a threshold (Figure 4a, upper panel,

black versus red) [68�]. In other words, the sensory

stimulus needs to be sufficiently strong in order to be

propagated along the cortical hierarchy and gain access to

the PFC. This phenomenon emerged unexpectedly in

the model. Moreover, it is abolished when in the model

feedback projections are disconnected (Figure 4a, lower

panel), demonstrating the importance of top-down sig-

naling. Threshold crossing for access to the PFC has been

hypothesized as a signature of awareness of a sensory

input (Figure 4b). When a stimulus appears in the envi-

ronment with a small amplitude, we sometimes detect it,

sometimes not. With the same physical stimulation of our
www.sciencedirect.com
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Figure 3

(a) (b)

(c) (d)
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A multi-regional model of the macaque monkey cortex endowed with a laminar structure. (a) The scheme shows the four levels considered: a

within-layer local microcircuit consisting of an excitatory (red) and an inhibitory (blue) population (upper left), a laminar circuit with two laminar

modules (corresponding to supra-granular and infra-granular layers, lower left), an inter-areal circuit with laminar-specific projections (lower right),

and a large-scale network of 30 cortical areas based on macaque anatomical connectivity (upper right). Each level is anatomically constrained.

Only the connections at each level not shown at a lower level are plotted, for clarity. (b) Left panel: the superficial layer and deep layer display

gamma (upper panel) and alpha (lower panel) oscillations. Right panel: the periodogram of the superficial layer shows gamma modulated by alpha

wave (top), whereas the deep layer is dominated by alpha rhythmicity (bottom). (c) Granger causality as a function of frequency for feedforward

signaling from V1 to V4 (green) and feedback (orange). (d) Cortical hierarchy deduced from the frequency-dependent Granger causality measure in

the model (left panel) and in a monkey experiment (right panel). Reproduced with permission from Ref. [57] with experimental data from Ref. [26].
sense organs, evoked activity remains largely confined to

the posterior part of the cortex, and the input is reported

as absent. When we are conscious of its presence, the

Global Workspace Theory posits that the cortical core,

largely centered in the PFC ‘lights up’ as in an ‘ignition’

and activates the whole brain via feedback projections

[69]. Further work is warranted to see if our model can

indeed account for salient observations from monkey

physiology about the ignition phenomenon [70].

Looking into future
In summary, quantitative connectomic databases are now

available (Table 1), including directed- and weighted-

inter-areal cortical connection matrices for macaque, mar-

moset and mouse. These data are of a different kind from

connectomics on mm spatial scale, achieved using elec-

tron microscopy for much smaller animals such as

Drosophila fly [71] but possibly for mammals in the future

[72]. Combined with genetic tools, research in this direc-

tion blurs the boundary between macroscopic and
www.sciencedirect.com 
mesoscopic connectomes towards cell-type specific

connectivity.

For monkeys, existent datasets are incomplete as they

only include a subset of cortical areas. This limitation

makes it difficult for dynamical models to simulate func-

tional connectivity, defined by the covariance of activities

between cortical areas. A subnetwork does not encompass

all areas and their feedback loops, and this could impact

on global brain dynamics. Therefore, ongoing efforts to

complete the full graph of monkey cortico-cortical con-

nectivity should be a priority for the field.

The cortico-cortical connectivity discussed above is not

cell-type specific. However, in the short term, investiga-

tion of laminar specific viral tracing of connections in

nonhuman primates carried out in parallel with laminar-

resolution fMRI in human will lead to major progress [66].

In primates classical tracers have established that feed-

back connections numerically dominate the cortical
Current Opinion in Neurobiology 2020, 65:152–161
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Figure 4

(a)

(b)
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Signal propagation and the ignition phenomenon in the cortex. (a) Top and middle: In a macaque cortex model of spiking neurons, as the

amplitude of an input to V1 is gradually increased, the peak response in areas of the occipital lobe (black) grows gradually. By contrast, activity is

absent in the prefrontal cortex unless the stimulus intensity exceeds a threshold level (red). The activity map is confined to the posterior part of the

cortex when the input is weak; if the input is above the threshold, access to the PFC leads to enhanced activity throughout the cortex. Note that

this model included only a subset of cortical areas for which connectivity data are available, therefore the activity map is restricted only to those

areas in the model. Bottom: The thresholding effect disappears when top-down connections in the model are deleted, demonstrating an important

role of long-range feedback loops. (b) The model behavior is akin to the all-or-none ignition phenomenon associated with consciousness, that was

observed experimentally with humans. Panel (a) is reproduced from Ref. [68�].

Current Opinion in Neurobiology 2020, 65:152–161 www.sciencedirect.com
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Table 1

Brain connectomes resources

Species Method Spatial scale References Open access database

Fly Electron microscopy Synaptic/sub-cellular [71] https://temca2data.org/

Mouse Viral anterograde tract tracing Cellular (cell-type specific) [18,21��] http://connectivity.brain-map.org/

Retrograde tract tracing Cellular [20] https://core-nets.org/

Monkey Retrograde tract tracing Cellular [15] https://core-nets.org/

Marmoset Retrograde tract tracing Cellular [22,23��] http://marmosetbrain.org

Human fMRI 1–2 mm [80] www.humanconnectome.org
hierarchy (Figure 1). Viral tracing will establish the inter-

areal laminar restricted connectivity, which will be par-

ticularly relevant for elucidating the mechanisms

whereby top down feedback pathways implement higher

cognitive processes [66,73]. Empowered by genetic tools,

future work will yield cell-type specific connection pat-

terns, such as how different populations of pyramidal

neurons in deep layers 5 and 6 project to distinct cortical

and subcortical structures in primates. Again, quantifica-

tion into numbers would be required for such data to be

utilized in computational modeling, which plays an

increasing role in our investigations of complex cortical

circuitry with its abundance of feedback loops.

A long list of open questions can be made for future

research; here is a short one. First, how can a multi-

regional network model shed new insights into distrib-

uted cognitive processes such as working memory [74]?

Second, why do different circuits operate in different

dynamical regimes, such as brief response, sequential

activity and persistent activity? Third, can we harness

genomic data to quantify biological properties in different

cell types across cortical areas, that will inform future

development of dynamical modeling? Fourth, what are

the concise rules for the interactions between the cortex,

the hippocampus, thalamus, amygdala, claustrum, basal

ganglia and cerebellum?

In summary, technological advances, experiments and

computational modeling have identified several general

principles of large-scale cortical organization: [1] weights

of inter-areal connections obey the EDR [2], distributions

of cortico-cortical connection weights are lognormal [3], a

cortical hierarchy can be parametrically quantified [4],

synaptic excitation and inhibition vary across the cortex in

the form of macroscopic gradients. In the next phase of

the brain connectome, genetically powered and cell-type

specific connectome, single-cell RNA-seq mapping,

large-scale neurophysiology using Neuropixels probes [

75,76�,77��,78] will produce a deluge of data. Novel

analysis tools, new ideas and theory will be critical for

us to transform data into knowledge, ushering in an era of

computational neuroscience of the whole brain.
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